Login / Signup

Stem Cell Extracellular Matrix-Modified Decellularized Tendon Slices Facilitate the Migration of Bone Marrow Mesenchymal Stem Cells.

Xuan YaoLiang-Ju NingShu-Kun HeJing CuiRuo-Nan HuYi ZhangYan-Jing ZhangJing-Cong LuoWei DingTing-Wu Qin
Published in: ACS biomaterials science & engineering (2019)
It is highly desirable to develop a novel scaffold that can induce stem cell migration in tendon tissue engineering and regeneration. The objective of this study is to assess the effect of stem cell extracellular matrix-modified decellularized tendon slices (ECM-DTSs) on bone marrow mesenchymal stem cells (BMSCs) migration and explore the possible molecular mechanisms. Native ECM produced by BMSCs and tendon-derived stem cells (TDSCs) was deposited on DTSs, denoted as bECM-DTSs and tECM-DTSs, respectively, and the migration of BMSCs treated with the extracts from ECM-DTSs was studied. Almost all the seeded stem cells were removed from the stem cell-DTS composites, while ECM produced by stem cells completely covered the surface of the DTSs. Significantly higher levels of chemokines, including stromal cell-derived factor-1 (SDF-1) and monocyte chemotactic protein-1 (MCP-1) were released by ECM-DTSs than by bare DTSs (p < 0.05), according to ELISA, and tECM-DTSs exhibited the highest release within 72 h. bECM-DTSs and tECM-DTSs markedly improved BMSCs migration compared to bare DTSs, with tECM-DTSs yielding the best recruitment effects. The ECM-DTSs led to early cytoskeletal changes compared to bare DTSs (p < 0.05). Migration-related gene and protein expression was significantly up-regulated in BMSCs treated with ECM-DTSs via the PI3K/AKT signaling pathway (p < 0.05), indicating that ECM-DTSs could enhance BMSCs migration via the PI3K/AKT signal pathway, and the effect of tECM-DTSs on BMSCs migration is superior to that of bECM-DTSs. This may provide the experimental and theoretical evidence for using stem cell-derived ECM-modified scaffold as a novel approach to recruit stem cells.
Keyphrases