Login / Signup

Multitopic ligand directed assembly of low-dimensional metal-chalcogenide organic frameworks.

Yi LiuKaiqi YeYue WangShanqing ZhangXian-Hui BuPingyun Feng
Published in: Dalton transactions (Cambridge, England : 2003) (2018)
Despite tremendous progress in metal-organic frameworks, only limited success has been achieved with metal-chalcogenide organic frameworks. Metal-chalcogenide organic frameworks are desirable because they offer a promising route towards tunable semiconducting porous frameworks. Here, four novel semiconducting chalcogenide-organic hybrid compounds have been synthesized through a solvothermal method. Multitopic organic molecules, i.e., 1,2-di-(4-pyridyl)ethylene (L1), 1,3,5-tris(4-pyridyl-trans-ethenyl)benzene (L2) and tetrakis(4-pyridyloxymethylene)methane (L3), have been used as linkers to assemble Zn(SAr)2 or Zn2(SAr)4 units to generate different patterns of spatial organizations. Single-crystal structural analyses indicate that compounds NTU-2, NTU-3 and NTU-4 possess two-dimensional layer structures, while compound NTU-1 adopts a one-dimensional coordination framework (NTU-n, where n is the number related to a specific structure). The diffuse-reflectance spectra demonstrate that these four compounds possess indirect bandgaps and their tunable bandgaps are correlated with their compositions and crystal structures.
Keyphrases