Preparation of substituted triphenylenes via nickel-mediated Yamamoto coupling.
Zachary W SchroederJoshua LeDrewVanessa M SelmaniKenneth E MalyPublished in: RSC advances (2021)
Substituted triphenylenes show promise as organic semiconductors because of their ability to form columnar liquid crystalline phases featuring extended π-stacked arrays. While there are several methods for preparing triphenylenes, including oxidative cyclization reactions such as the Scholl reaction, as well as transition metal-catalyzed aryne cyclotrimerization, these methods are not effective for electron deficient triphenylenes. Here we demonstrate that the nickel-mediated Yamamoto coupling of o -dibromoarenes is a concise and efficient way to prepare substituted triphenylenes, including electron-deficient systems that are otherwise challenging to prepare. We also demonstrate the application of this approach to prepare electron deficient discotic mesogens composed of triphenylenes bearing imide and thioimide groups.