Login / Signup

Physiological intensity profile, exercise load and performance predictors of a 65-km mountain ultra-marathon.

Alessandro FornasieroAldo SavoldelliDamiano FruetGennaro BocciaBarbara PellegriniFederico Schena
Published in: Journal of sports sciences (2017)
The aims of the study were to describe the physiological profile of a 65-km (4000-m cumulative elevation gain) running mountain ultra-marathon (MUM) and to identify predictors of MUM performance. Twenty-three amateur trail-runners performed anthropometric evaluations and an uphill graded exercise test (GXT) for VO2max, ventilatory thresholds (VTs), power outputs (PMax, PVTs) and heart rate response (HRmax, HR@VTs). Heart rate (HR) was monitored during the race and intensity was expressed as: Zone I (<VT1), Zone II (VT1-VT2), Zone III (>VT2) for exercise load calculation (training impulse, TRIMP). Mean race intensity was 77.1%±4.4% of HRmax distributed as: 85.7%±19.4% Zone I, 13.9%±18.6% Zone II, 0.4%±0.9% Zone III. Exercise load was 766±110 TRIMP units. Race time (11.8±1.6h) was negatively correlated with VO2max (r = -0.66, P <0.001) and PMax (r = -0.73, P <0.001), resulting these variables determinant in predicting MUM performance, whereas exercise thresholds did not improve performance prediction. Laboratory variables explained only 59% of race time variance, underlining the multi-factorial character of MUM performance. Our results support the idea that VT1 represents a boundary of tolerable intensity in this kind of events, where exercise load is extremely high. This information can be helpful in identifying optimal pacing strategies to complete such extremely demanding MUMs.
Keyphrases
  • high intensity
  • heart rate
  • resistance training
  • heart rate variability
  • physical activity
  • blood pressure
  • high resolution
  • heart failure
  • atrial fibrillation
  • left ventricular
  • mass spectrometry