Mechanisms of Resistance to Second-Generation Antiandrogen Therapy for Prostate Cancer: Actual Knowledge and Perspectives.
Francesco PintoFrancesco DibitettoRagonese MauroPierfrancesco BassiPublished in: Medical sciences (Basel, Switzerland) (2022)
Prostate cancer therapy for locally advanced and metastatic diseases includes androgen deprivation therapy (ADT). Second-generation antiandrogens have a role in castration-resistant prostate cancer. Nevertheless, some patients do not respond to this therapy, and eventually all the patients became resistant. This is due to modifications to intracellular signaling pathways, genomic alteration, cytokines production, metabolic switches, constitutional receptor activation, overexpression of some proteins, and regulation of gene expression. The aim of this review is to define the most important mechanisms that drive this resistance and the newest discoveries in this field, specifically for enzalutamide and abiraterone, with potential implications for future therapeutic targets. Furthermore, apalutamide and darolutamide share some resistance mechanisms with abiraterone and enzalutamide and could be useful in some resistance settings.
Keyphrases
- prostate cancer
- end stage renal disease
- gene expression
- ejection fraction
- cancer therapy
- newly diagnosed
- chronic kidney disease
- small cell lung cancer
- squamous cell carcinoma
- radical prostatectomy
- healthcare
- peritoneal dialysis
- cell proliferation
- prognostic factors
- mesenchymal stem cells
- oxidative stress
- patient reported outcomes
- climate change
- genome wide
- current status
- human health
- chemotherapy induced