Login / Signup

The potential of dietary nanoparticles to enhance allergenicity of milk proteins: an in vitro investigation.

Ke XuWut Hmone PhueNiladri BasuSaji George
Published in: Immunology and cell biology (2023)
In recent years, the popularity of dietary nanoparticles (NPs) in the food industry as additives has raised concerns because of the lack of knowledge about potential adverse health outcomes ensuing from the interactions of NPs with components of the food matrix and gastrointestinal system. In this study, we used a transwell culture system that consisted of human colorectal adenocarcinoma (Caco-2) cells in the apical insert and Laboratory of Allergic Diseases 2 mast cells in the basal compartment to study the effect of NPs on milk allergen delivery across the epithelial layer, mast cell responses and signaling between epithelial and mast cells in allergenic inflammation. A library of dietary particles (silicon dioxide NPs, titanium dioxide NPs and silver NPs) that varied in particle size, surface chemistry and crystal structures with or without pre-exposure to milk was used in this investigation. Milk-interacted particles were found to acquire surface corona and increased the bioavailability of milk allergens (casein and β-lactoglobulin) across the intestinal epithelial layer. The signaling between epithelial cells and mast cells resulted in significant changes in the early phase and late-phase activation of the mast cells. This study suggested that antigen challenge in mast cells with the presence of dietary NPs may cause the transition of allergic responses from an immunoglobulin E (IgE)-dependent mechanism to a mixed mechanism (both IgE-dependent and IgE-independent mechanisms).
Keyphrases
  • endothelial cells
  • oxide nanoparticles
  • healthcare
  • oxidative stress
  • induced apoptosis
  • squamous cell carcinoma
  • emergency department
  • risk assessment
  • cell death
  • allergic rhinitis
  • rectal cancer
  • adverse drug