Login / Signup

Pendant Group Modifications Provide Graft Copolymer Silicones with Exceptionally Broad Thermomechanical Properties.

Keith E L HustedAbraham Herzog-ArbeitmanDenise KleinschmidtWenxu ZhangZe-Hao SunAlyssa J FielitzAn N LeMingjiang ZhongJeremiah A Johnson
Published in: ACS central science (2022)
Graft copolymers offer a versatile platform for the design of self-assembling materials; however, simple strategies for precisely and independently controlling the thermomechanical and morphological properties of graft copolymers remain elusive. Here, using a library of 92 polynorbornene- graft -polydimethylsiloxane (PDMS) copolymers, we discover a versatile backbone-pendant sequence-control strategy that addresses this challenge. Small structural variations of pendant groups, e.g., cyclohexyl versus n -hexyl, of small-molecule comonomers have dramatic impacts on order-to-disorder transitions, glass transitions, mechanical properties, and morphologies of statistical and block silicone-based graft copolymers, providing an exceptionally broad palette of designable materials properties. For example, statistical graft copolymers with high PDMS volume fractions yielded unbridged body-centered cubic morphologies that behaved as soft plastic crystals. By contrast, lamellae-forming graft copolymers provided robust, yet reprocessable silicone thermoplastics (TPs) with transition temperatures spanning over 160 °C and elastic moduli as high as 150 MPa despite being both unentangled and un-cross-linked. Altogether, this study reveals a new pendant-group-mediated self-assembly strategy that simplifies graft copolymer synthesis and enables access to a diverse family of silicone-based materials, setting the stage for the broader development of self-assembling materials with tailored performance specifications.
Keyphrases
  • small molecule
  • amino acid
  • single cell