In Situ Synthesis of a Stable Fe₃O₄@Cellulose Nanocomposite for Efficient Catalytic Degradation of Methylene Blue.
Quan LuYanjuan ZhangHuayu HuWen WangZuqiang HuangDong ChenMei YangJing LiangPublished in: Nanomaterials (Basel, Switzerland) (2019)
To rapidly obtain a stable Fe₃O₄@cellulose heterogeneous Fenton catalyst, a novel in situ chemical co-precipitation method was developed. Compared with mechanical activation (MA)-pretreated cellulose (MAC), MA + FeCl₃ (MAFC)-pretreated cellulose (MAFCC) was more easily dissolved and uniformly distributed in NaOH/urea solvent. MAFCC and MAC solutions were used as precipitators to prepare Fe₃O₄@MAFCC and Fe₃O₄@MAC nanocomposites, respectively. MAFCC showed stronger interaction and more uniform combination with Fe₃O₄ nanoparticles than MAC, implying that MAFC pretreatment enhanced the accessibility, reactivity, and dissolving capacity of cellulose thus, provided reactive sites for the in situ growth of Fe₃O₄ nanoparticles on the regenerated cellulose. Additionally, the catalytic performance of Fe₃O₄@MAFCC nanocomposite was evaluated by using for catalytic degradation of methylene blue (MB), and Fe₃O₄@MAC nanocomposite and Fe₃O₄ nanoparticles were used for comparative studies. Fe₃O₄@MAFCC nanocomposite exhibited superior catalytic activity for the degradation and mineralization of MB in practical applications. After ten cycles, the structure of Fe₃O₄@MAFCC nanocomposite was not significantly changed owing to the strong interaction between MAFCC and Fe₃O₄ nanoparticles. This study provides a green pathway to the fabrication of a stable nanocomposite catalyst with high catalytic performance and reusability for the degradation of organic pollutants.