Login / Signup

The effect of ligand amount, affinity and internalization on PSMA-targeted imaging and therapy: A simulation study using a PBPK model.

Nusrat J BegumGerhard GlattingHans-Jürgen WesterMatthias EiberAmbros J BeerPeter Kletting
Published in: Scientific reports (2019)
The aim of this work was to investigate the effect of ligand amount, affinity and internalization of prostate-specific membrane antigen (PSMA)-specific ligands on the activity concentrations for PET/CT imaging and on the absorbed doses for therapy. A physiologically-based pharmacokinetic (PBPK) model for PSMA-specific ligands was implemented. Thirteen virtual patients with metastatic castration-resistant prostate cancer were analysed. Simulations were performed for different combinations of association rates kon (0.1-0.01 L/nmol/min), dissociation rates koff (0.1-0.0001 min-1), internalization rates λint (0.01-0.0001 min-1) and ligand amounts (1-1000 nmol). For imaging the activity was normalized to volume and injected activity (68Ga-PSMA at 1 h). For therapy the absorbed dose was calculated for 7.3 ± 0.3 GBq 177Lu-PSMA. The effect of the investigated parameters on therapy were larger compared to imaging. For imaging, the combination of properties leading to the highest tumour uptake was kon = 0.1 L/nmol/min, koff = 0.01 min-1 for typical ligand amounts (1-10 nmol). For therapy, the higher the internalization rate, the larger was the required ligand amount for optimal tumour-to-kidney ratios. The higher the affinity, the more important was the choice of the optimal ligand amount. PBPK modelling provides insight into the pharmacokinetics of PSMA-specific ligands. Further in silico and in vivo studies are required to verify the influence of the analysed parameters.
Keyphrases
  • pet ct
  • high resolution
  • positron emission tomography
  • pet imaging
  • prostate cancer
  • mesenchymal stem cells
  • drug delivery
  • molecular dynamics
  • cell therapy
  • cancer therapy
  • replacement therapy