Login / Signup

Genome-wide association study reveals WRKY42 as novel player in oviposition preference of Pieris butterflies.

Silvia CoolenMarcel van DijenJohan A van PeltJoop J A Van LoonCorné M J PieterseSaskia C M Van Wees
Published in: Journal of experimental botany (2022)
Insect herbivores are amongst the most destructive plant pests, damaging both naturally occurring and domesticated plants. As sessile organisms, plants make use of structural and chemical barriers to counteract herbivores. However, over 75 percent of herbivorous insect species are well adapted to their host's defenses and these specialists are generally difficult to ward off. By actively antagonizing the number of insect eggs deposited on plants, future damage by the herbivore's offspring can be limited. Therefore, it is important to understand which plant traits influence attractiveness for oviposition, especially for specialist insects that are well adapted to their host plants. In this study, we investigated the oviposition preference of Pieris butterflies (Lepidoptera: Pieridae) by offering them the choice between 350 different naturally occurring Arabidopsis thaliana accessions. Using a genome-wide association study of the oviposition data and subsequent fine mapping with full genome sequences of 164 accessions, we identified WRKY42 and AOC1 as candidate genes that are associated with the oviposition preference observed for Pieris butterflies. Host plant choice assays with A. thaliana genotypes impaired in WRKY42 or AOC1 function confirmed a clear role for WRKY42 in oviposition preference of female Pieris butterflies, while for AOC1 the effect was mild. In contrast, WRKY42-impaired plants, that were preferred for oviposition by butterflies, negatively impacted offspring performance. These findings exemplify that plant genotype can have opposite effects on oviposition preference and caterpillar performance. This knowledge can be used for breeding trap crops or crops that are unattractive for oviposition by pest insects.
Keyphrases