Unlocking SGK1 inhibitor potential of bis-[1-N,7-N, pyrazolo tetraethoxyphthalimido{-4-(3,5-Dimethyl-4-(spiro-3-methylpyazolo)-1,7-dihydro-1H-dipyrazolo[3,4-b;4',3'-e]pyridin-8-yl)}]p-disubstituted phenyl compounds: a computational study.
Abhishek Kumar VermaSk Faisal AhmedMd Shahadat HossainAli Asger BhojiyaSudhir K UpadhyayAbhishek K SrivastavaNripendra Singhnull HarinaMd Mizanur RahamanNewaz Mohammed BahadurPublished in: Journal of biomolecular structure & dynamics (2021)
SGK1 (Serum and Glucocorticoid Regulated Kinase 1), a serine/threonine kinase that is activated by various stimuli, including serum and glucocorticoids. It controls inflammation, apoptosis, hormone release, neuro-excitability and cell proliferation, all of which play an important role in cancer progression and metastasis. SGK1 was recently proposed as a potential drug target for cancer, diabetes, and neurodegenerative diseases. In this study, molecular docking, physiochemical, toxicological properties and molecular dynamic simulation of the Bis-[1-N,7-N, Pyrazolo tetraethoxyphthalimido{-4-(3,5-Dimethyl-4-(spiro-3-methylpyazolo)-1,7-dihydro-1H-dipyrazolo[3,4-b;4',3'-e]pyridin-8-yl)}]p-disubstituted phenyl compoundsand reference EMD638683 against new SGK1 target protein. Compared to the reference inhibitor EMD638683, we choose the best compounds (series 2-6) based on the binding energy (in the range from -11.0 to -10.6 kcal/mol). With the exception of compounds 2 and 6, none of the compounds posed a risk for AMES toxicity or carcinogenicity due to their toxicological properties. 100 ns MD simulation accompanied by MM/PBSA energy calculations and PCA. According to MD simulation results, the binding of compounds 3, 4 and 5 stabilizes the SGK1 structure and causes febrile conformational changes compared to EMD638683. As a result of this research, the final selected compounds 3, 4 and 5 can be used as scaffolds to develop promising SGK1 inhibitors for the treatment of related diseases such as cancer.
Keyphrases
- papillary thyroid
- molecular docking
- molecular dynamics
- molecular dynamics simulations
- oxidative stress
- cell proliferation
- squamous cell
- protein kinase
- cardiovascular disease
- type diabetes
- tyrosine kinase
- binding protein
- cell death
- density functional theory
- risk assessment
- skeletal muscle
- zika virus
- young adults
- virtual reality
- transcranial direct current stimulation
- insulin resistance
- human health
- pi k akt
- dna binding
- signaling pathway
- electronic health record