Login / Signup

Conformational Order in Aggregated rra-P3HT as an Indicator of Quality of Boron Nitride Nanotubes.

Zygmunt J JakubekMaohui ChenYadienka Martinez-RubiBenoit SimardShan Zou
Published in: The journal of physical chemistry letters (2020)
We report on investigation, by correlated polarized excitation fluorescence microscopy (PEFM) and atomic force microscopy (AFM) imaging, of the conformational order of regiorandom poly(3-hexyl-thiophene) (rra-P3HT) aggregated on two boron nitride nanotube (BNNT) materials (BNNT-2 and BNNT-3) processed by different purification methods. rra-P3HT photoluminescence excited by linearly polarized light shows polarization direction-dependent intensity with a modulation depth, M, generally >0.5 for rra-P3HT on nanotubes and <0.5 for rra-P3HT on nontubular impurities. PEFM-measured modulation depth value distributions can be decomposed into two components, one corresponding to ordered rra-P3HT on nanotubes and the other to disordered rra-P3HT on impurities. The nanotube component peaks at M = 0.64 and 0.70 and comprises 60% and 78% of the normalized distribution for rra-P3HT on BNNT-2 and BNNT-3, respectively, indicating higher quality and higher fraction of nanotubes in the latter material. The method can be integrated in a material development platform to monitor production and purification progress.
Keyphrases