Login / Signup

Spectroscopic characterization of europium binding to a calmodulin-EF4 hand peptide-polymer conjugate.

Dini MarlinaYannic MüllersUlrich GlebeMichael U Kumke
Published in: RSC advances (2024)
The emergence of biological ligand as an alternative to chemical ligands enables a sustainable lanthanide extraction route. In this study, a peptide originating from the loop of domain 4 calmodulin (EF4) was synthesized and the interaction with europium ions was monitored using time resolved laser fluorescence spectroscopy (TRLFS). Despite being retracted from its full protein structure, the twelve amino acids of calmodulin-EF4 showed binding to europium. Europium-peptide complex formation was evident by an increase in decay time from 110 to 187 μs. The spectra of europium bound to peptide can be easily distinguished from the free europium ion as the 5 D 0 → 7 F 2 peak intensifies. When europium bound to the peptide-polymer conjugate, the decay time was further increased to 259 μs. This suggests that lanthanide binding can be enhanced by immobilizing the short peptide into a polymer matrix. The europium-peptide/conjugate bond was reversible, triggered by pH, promoting peptide reusability. Due to the fact that the study was conducted exclusively in water, it suggests minimal use of chemicals is possible while maintaining peptide affinity. This makes the calmodulin-EF4 peptide an ideal candidate as biological ligand. This study lays the groundwork for developing a peptide-based filter material for lanthanide separation.
Keyphrases
  • high resolution
  • amino acid
  • molecular dynamics
  • molecular docking