Login / Signup

Synergistic Effect of Pressurization Rate and β-Form Nucleating Agent on the Multi-Phase Crystallization of iPP.

Wenxia JiaRanran ZhuoMingkun XuJiaxiang LinXiaoting LiChun-Tai LiuChangyu ShenChunguang Shao
Published in: Polymers (2021)
Using a homemade pressure device, we explored the synergistic effect of pressurization rate and β-form nucleating agent (β-NA) on the crystallization of an isotactic polypropylene (iPP) melt. The obtained samples were characterized by combining small angle X-ray scattering and synchrotron wide angle X-ray diffraction. It was found that the synergistic application of pressurization and β-NA enables the preparation of a unique multi-phase crystallization of iPP, including β-, γ- and/or mesomorphic phases. Pressurization rate plays a crucial role on the formation of different crystal phases. As the pressurization rate increases in a narrow range between 0.6-1.9 MPa/s, a significant competitive formation between β- and γ-iPP was detected, and their relative crystallinity are likely to be determined by the growth of the crystal. When the pressurization rate increases further, both β- and γ-iPP contents gradually decrease, and the mesophase begins to emerge once it exceeds 15.0 MPa/s, then mesomorphic, β- and γ- iPP coexist with each other. Moreover, with different β-NA contents, the best pressurization rate for β-iPP growth is the same as 1.9 MPa/s, while more β-NA just promotes the content of β-iPP under the rates lower than 1.9 MPa/s. In addition to inducing the formation of β-iPP, it shows that β-NA can also significantly promote the formation of γ-iPP in a wide pressurization rate range between 3.8 to 75 MPa/s. These results were elucidated by combining classical nucleation theory and the growth theory of different crystalline phases, and a theoretical model of the pressurization-induced crystallization is established, providing insight into understanding the multi-phase structure development of iPP.
Keyphrases
  • high resolution
  • computed tomography
  • magnetic resonance
  • drug delivery
  • oxidative stress
  • mass spectrometry
  • cancer therapy
  • diabetic rats