Design of a cathodoluminescence image generator using a Raspberry Pi coupled to a scanning electron microscope.
Alfredo BenítezUlises SantiagoJohn E SanchezArturo PoncePublished in: The Review of scientific instruments (2018)
In this work, an innovative cathodoluminescence (CL) system is coupled to a scanning electron microscope and synchronized with a Raspberry Pi computer integrated with an innovative processing signal. The post-processing signal is based on a Python algorithm that correlates the CL and secondary electron (SE) images with a precise dwell time correction. For CL imaging, the emission signal is collected through an optical fiber and transduced to an electrical signal via a photomultiplier tube (PMT). CL Images are registered in a panchromatic mode and can be filtered using a monochromator connected between the optical fiber and the PMT to produce monochromatic CL images. The designed system has been employed to study ZnO samples prepared by electrical arc discharge and microwave methods. CL images are compared with SE images and chemical elemental mapping images to correlate the emission regions of the sample.