Can the Monte Carlo method predict the toxicity of binary mixtures?
Alla P ToropovaAndrey A ToropovPublished in: Environmental science and pollution research international (2021)
Risk assessment of toxicants mainly is a result of experiments with single substances. However, toxicity in natural ecosystems typically does not result from single toxicant exposure but is rather a result of exposure to mixtures of toxicants. It is not surprising a mixture of toxicity is a subject of eco-toxicological interest for several decades. A quantitative structure-activity relationships (QSAR)-based approach is an attractive approach to assessing the joint effects in the binary mixtures. The validity of the proposed approach was demonstrated by comparing the predicted values against the experimentally determined values. Simplified molecular input-line entry system (SMILES) is used for the representation of the molecular structures of components of two-component mixtures to build up QSAR. The SMILES-based models are improving if the Monte Carlo optimization aimed to define 2D-optimal descriptors apply the so-called index of ideality of correlation (IIC), which is a mathematical function of both the correlation coefficient and mean absolute error calculated for the positive and negative difference between observed and calculated values of toxicity. The average statistical quality of these models (for the validation set) is n=25, R2=0.95, and RMSE=0.375.