Login / Signup

Recognition of centromere-specific histone Cse4 by the inner kinetochore Okp1-Ame1 complex.

Sunbin DengJiaxi CaiStephen C HarrisonHuilin ZhouStephen P Hinshaw
Published in: EMBO reports (2023)
Successful mitosis depends on the timely establishment of correct chromosomal attachments to microtubules. The kinetochore, a modular multiprotein complex, mediates this connection by recognizing specialized chromatin containing a histone H3 variant called Cse4 in budding yeast and CENP-A in vertebrates. Structural features of the kinetochore that enable discrimination between Cse4/CENP-A and H3 have been identified in several species. How and when these contribute to centromere recognition and how they relate to the overall structure of the inner kinetochore are unsettled questions. More generally, this molecular recognition ensures that only one kinetochore is built on each chromatid and that this happens at the right place on the chromatin fiber. We have determined the crystal structure of a Cse4 peptide bound to the essential inner kinetochore Okp1-Ame1 heterodimer from budding yeast. The structure and related experiments show in detail an essential point of Cse4 contact and provide information about the arrangement of the inner kinetochore.
Keyphrases
  • gene expression
  • dna damage
  • transcription factor
  • genome wide
  • oxidative stress
  • single molecule