Login / Signup

Automated Annotation of Epileptiform Burden and Its Association with Outcomes.

Sahar F ZafarEric S RosenthalJin JingWendong GeMohammad TabaeizadehHassan Aboul NourMaryum ShoukatHaoqi SunFarrukh JavedSolomon KassaMuhammad EdhiElahe BordbarJustin GallagherValdery MouraManohar GhantaYu-Ping ShaoSungtae AnJimeng SunAndrew J ColeMichael Brandon Westover
Published in: Annals of neurology (2021)
Automated measurement of peak epileptiform activity burden affords a convenient, consistent, and quantifiable target for future multicenter randomized trials investigating whether suppressing epileptiform activity improves outcomes. ANN NEUROL 2021;90:300-311.
Keyphrases
  • machine learning
  • deep learning
  • high throughput
  • signaling pathway
  • risk factors
  • current status
  • metabolic syndrome
  • clinical trial