Ultrasound-mediated in vivo biodistribution of coumarin-labeled sorafenib-loaded liposome-based nanotheranostic system.
Usama SarwarMuhammad NaeemFarwa NurjisShafqat KarimAbida RazaPublished in: Nanomedicine (London, England) (2023)
Aim: This study aimed to synthesize folate-conjugated sorafenib-loaded (FCSL) liposomes for theranostic application using ultrasound (US). Materials & methods: US parameter optimization, in vitro release, anticancer effect, in vivo biodistribution, optical imaging and biocompatibility of liposomes were studied. Results: With 84% in vitro release after 4 min of US exposure at 3 MHz (1.2 mechanical index), FCSL liposomes showed lower IC 50 (8.70 μM) versus sorafenib (9.34 μM) against HepG2 cells. In vivo biodistribution of FCSL liposomes versus sorafenib after 9 mg/kg injection in the liver (8.63 vs 0.55) > intestine (8.45 vs 1.07) > stomach (5.62 vs 0.57) > kidney (5.46 vs 0.91) showed longer circulation time in plasma and can be tracked in mice. Conclusion: A threefold higher drug concentration in the liver in US-exposed mice makes this a successful nanotheranostic approach.