Construction and evaluation of an antibody phage display library targeting heparan sulfate.
Lars A A DamenEls M A van de WesterloElly M M VersteegThierry van WesselWilleke F DaamenToin H van KuppeveltPublished in: Glycoconjugate journal (2020)
Heparan sulfate (HS) is a linear polysaccharide with high structural diversity. Different HS epitopes have been detected and localized using single chain variable fragment (scFv) antibodies from a 'single pot' phage display library containing a randomized complementarity determining region of the heavy chain (CDR3). In this study, we created a new library containing anti-HS scFvs that all harbor a dp-38 heavy chain segment where the CDR3 region was engineered to contain the XBBXBX heparin binding consensus site (X = any amino acid, B = R, K or H). The library contained ~1.73 × 106 unique antibodies and was biopanned against HS from several sources. The selected antibodies were sequenced and chemically/immunohistologically characterized. A number of 67 anti-HS scFv antibodies were selected, of which 31 contained a XBBXBX CDR3 sequence. There was a clear preference for glycine at the first and proline at the fourth position of the CDR3. The sequence GZZP(R/K)X (Z = R, K or H, but may also contain N, S, or Q) was unusually overrepresented. Selected antibodies reacted with HS/heparin, but not with other glycosaminoglycans. Antibodies reacted differentially with respect to N-, 2-O, or 6-O-desulfated heparin preparations, and showed distinct topologies of HS epitopes in rat kidney sections. The library may be instrumental in the selection of a large pool of HS epitope-specific antibodies, and - since all antibodies differ only in their 6 amino acid CDR region - may be a tool for a rational design of antibodies recognizing specific HS sulfation patterns.