Lithium Ion Recognition with Nanofluidic Diodes through Host-Guest Complexation in Confined Geometries.
Mubarak AliIshtiaq AhmedPatricio RamirezSaima NasirSalvador MafeChristof M NiemeyerWolfgang EnsingerPublished in: Analytical chemistry (2018)
The lithium ion recognition is receiving significant attention because of its application in pharmaceuticals, lubricants and, especially, in energy technology. We present a nanofluidic device for specific lithium ion recognition via host-guest complexation in a confined environment. A lithium-selective receptor molecule, the aminoethyl-benzo-12-crown-4 (BC12C4-NH2), is designed and functionalized on single conical nanopores in polyethylene terephthalate (PET) membranes. The native carboxylic acid groups on the pore walls are covalently linked with the crown ether moieties and the process is monitored from the changes in the current-voltage ( I- V) curves. The B12-crown-4 moieties are known to specifically bind with lithium ions and when the modified pore is exposed to different alkali metal chloride solutions separately, significant changes in the ion current and rectification are only observed for lithium chloride. This fact suggests the generation of positively charged B12C4-Li+ complexes on the pore surface. Furthermore, the nanofluidic diode is able to recognize the lithium ion even in the presence of high concentrations of potassium ions in the external electrolyte solution. Thus, this nanodevice suggests a strategy to miniaturize nanofluidic porous systems for efficient recognition, extraction, and separation of lithium from raw materials.