Login / Signup

Nucleation of α-Synuclein Amyloid Fibrils Induced by Cross-Interaction with β-Hairpin Peptides Derived from Immunoglobulin Light Chains.

Laetitia F HeidTatsiana KupreichykMarie P SchützmannWalfried SchneiderMatthias StoldtWolfgang Hoyer
Published in: International journal of molecular sciences (2023)
Heterologous interactions between different amyloid-forming proteins, also called cross-interactions, may have a critical impact on disease-related amyloid formation. β-hairpin conformers of amyloid-forming proteins have been shown to affect homologous interactions in the amyloid self-assembly process. Here, we applied two β-hairpin-forming peptides derived from immunoglobulin light chains as models to test how heterologous β-hairpins modulate the fibril formation of Parkinson's disease-associated protein α-synuclein (αSyn). The peptides SMAhp and LENhp comprise β-strands C and C' of the κ4 antibodies SMA and LEN, which are associated with light chain amyloidosis and multiple myeloma, respectively. SMAhp and LENhp bind with high affinity to the β-hairpin-binding protein β-wrapin AS10 according to isothermal titration calorimetry and NMR spectroscopy. The addition of SMAhp and LENhp affects the kinetics of αSyn aggregation monitored by Thioflavin T (ThT) fluorescence, with the effect depending on assay conditions, salt concentration, and the applied β-hairpin peptide. In the absence of agitation, substoichiometric concentrations of the hairpin peptides strongly reduce the lag time of αSyn aggregation, suggesting that they support the nucleation of αSyn amyloid fibrils. The effect is also observed for the aggregation of αSyn fragments lacking the N-terminus or the C-terminus, indicating that the promotion of nucleation involves the interaction of hairpin peptides with the hydrophobic non-amyloid-β component (NAC) region.
Keyphrases
  • multiple myeloma
  • binding protein
  • amino acid
  • transcription factor
  • dna damage
  • quantum dots