Login / Signup

Sound Transmission Loss of a Sandwich Plate with Adjustable Core Layer Thickness.

Tom EhrigMartin DannemannRon LuftChristian AdamsNiels ModlerPawel Kostka
Published in: Materials (Basel, Switzerland) (2020)
Compressible Constrained Layer Damping (CCLD) is a novel, semi-active, lightweight-compatible solution for vibration mitigation based on the well-known constrained layer damping principle. The sandwich-like CCLD set-up consists of a base structure, a constraining plate, and a compressible open-cell foam core in between, enabling the adjustment of the structure's vibration behaviour by changing the core compression using different actuation pressures. The aim of the contribution is to show to what degree, and in which frequency range the acoustic behaviour can be tuned using CCLD. Therefore, the sound transmission loss (TL), as an important vibro-acoustic index, is determined in an acoustic window test stand at different actuation pressures covering a frequency range from 0.5 to 5 kHz. The different actuation pressures applied cause a variation of the core layer thickness (from 0.9 d0 to 0.3 d0), but the resulting changes of the stiffness and damping of the overall structure have no significant influence on the TL up to approximately 1 kHz for the analysed CCLD design. Between 1 kHz and 5 kHz, however, the TL can be influenced considerably well by the actuation pressure applied, due to a damping-dominated behaviour around the critical frequency.
Keyphrases
  • high frequency
  • optical coherence tomography
  • climate change
  • single cell
  • minimally invasive
  • solid state