Login / Signup

Single-step calculation of susceptibility through multiple orientation sampling.

Lin ChenShuhui CaiPeter C M van ZijlXu Li
Published in: NMR in biomedicine (2021)
Quantitative susceptibility mapping (QSM) was developed to estimate the spatial distribution of magnetic susceptibility from MR signal phase acquired using a gradient echo (GRE) sequence. The field-to-susceptibility inversion in QSM is known to be ill-posed and needs numerical stabilization through either regularization or data oversampling. The calculation of susceptibility through the multiple orientation sampling (COSMOS) method uses phase data acquired at three or more head orientations to achieve a well-conditioned field-to-susceptibility inversion and is often considered the gold standard for in vivo QSM. However, the conventional COSMOS approach, here named multistep COSMOS (MSCOSMOS), solves the dipole inversion from the local field derived from raw GRE phase through multiple steps of phase preprocessing. Error propagations between these consecutive phase processing steps can thus affect the final susceptibility quantification. On the other hand, recently proposed single-step QSM (SSQSM) methods aim to solve an integrated inversion from unprocessed or total phase to mitigate such error propagations but have been limited to single orientation QSM. This study therefore aimed to test the feasibility of using single-step COSMOS (SSCOSMOS) to jointly perform background field removal and dipole inversion with multiple orientation sampling, which could serve as a better standard for gauging SSQSM methods. We incorporated multiple spherical mean value (SMV) kernels of various radii with the dipole inversion in SSCOSMOS. QSM reconstructions with SSCOSMOS and MSCOSMOS were compared using both simulations with a numerical head phantom and in vivo human brain data. SSCOSMOS permitted integrated background removal and dipole inversion without the need to adjust any regularization parameters. In addition, with sufficiently large SMV kernels, SSCOSMOS performed consistently better than MSCOSMOS in all the tested error metrics in our simulations, giving better susceptibility quantification and smaller reconstruction error. Consistent tissue susceptibility values were obtained between SSCOSMOS and MSCOSMOS.
Keyphrases
  • contrast enhanced
  • magnetic resonance
  • magnetic resonance imaging
  • high resolution
  • electronic health record
  • big data
  • machine learning
  • computed tomography
  • monte carlo
  • deep learning
  • data analysis
  • silver nanoparticles