Enhancing maturity in 3D kidney micro-tissues through clonogenic cell combinations and endothelial integration.
Fatemeh AbdollahzadehNiloofar Khoshdel-RadKhadijeh BahrehbarSaiedeh ErfanianVahid EzzatizadehMehdi TotonchiReza MoghadasaliPublished in: Journal of cellular and molecular medicine (2024)
As an advance laboratory model, three-dimensional (3D) organoid culture has recently been recruited to study development, physiology and abnormality of kidney tissue. Micro-tissues derived from primary renal cells are composed of 3D epithelial structures representing the main characteristics of original tissue. In this research, we presented a simple method to isolate mouse renal clonogenic mesenchymal (MLCs) and epithelial-like cells (ELCs). Then we have done a full characterization of MLCs using flow cytometry for surface markers which showed that more than 93% of cells expressed these markers (Cd44, Cd73 and Cd105). Epithelial and stem/progenitor cell markers characterization also performed for ELC cells and upregulating of these markers observed while mesenchymal markers expression levels were not significantly increased in ELCs. Each of these cells were cultured either alone (ME) or in combination with human umbilical vein endothelial cells (HUVECs) (MEH; with an approximate ratio of 10:5:2) to generate more mature kidney structures. Analysis of 3D MEH renal micro-tissues (MEHRMs) indicated a significant increase in renal-specific gene expression including Aqp1 (proximal tubule), Cdh1 (distal tubule), Umod (loop of Henle), Wt1, Podxl and Nphs1 (podocyte markers), compared to those groups without endothelial cells, suggesting greater maturity of the former tissue. Furthermore, ex ovo transplantation showed greater maturation in the constructed 3D kidney.