Login / Signup

Evolution from Tunneling to Hopping Mediated Triplet Energy Transfer from Quantum Dots to Molecules.

Zhiyuan HuangZihao XuTingting HuangVictor GrayKasper Moth-PoulsenTianquan LianMing Lee Tang
Published in: Journal of the American Chemical Society (2020)
Efficient energy transfer is particularly important for multiexcitonic processes like singlet fission and photon upconversion. Observation of the transition from short-range tunneling to long-range hopping during triplet exciton transfer from CdSe nanocrystals to anthracene is reported here. This is firmly supported by steady-state photon upconversion measurements, a direct proxy for the efficiency of triplet energy transfer (TET), as well as transient absorption measurements. When phenylene bridges are initially inserted between a CdSe nanocrystal donor and anthracene acceptor, the rate of TET decreases exponentially, commensurate with a decrease in the photon upconversion quantum efficiency from 11.6% to 4.51% to 0.284%, as expected from a tunneling mechanism. However, as the rigid bridge is increased in length to 4 and 5 phenylene units, photon upconversion quantum efficiencies increase again to 0.468% and 0.413%, 1.5-1.6 fold higher than that with 3 phenylene units (using the convention where the maximum upconversion quantum efficiency is 100%). This suggests a transition from exciton tunneling to hopping, resulting in relatively efficient and distance-independent TET beyond the traditional 1 nm Dexter distance. Transient absorption spectroscopy is used to confirm triplet energy transfer from CdSe to transmitter, and the formation of a bridge triplet state as an intermediate for the hopping mechanism. This first observation of the tunneling-to-hopping transition for long-range triplet energy transfer between nanocrystal light absorbers and molecular acceptors suggests that these hybrid materials should further be explored in the context of artificial photosynthesis.
Keyphrases
  • energy transfer
  • quantum dots
  • sensitive detection
  • living cells
  • single molecule
  • monte carlo
  • cerebral ischemia
  • photodynamic therapy
  • molecular dynamics
  • mass spectrometry