Multi-window approach enables two-fold improvement in OCT axial resolution with strong side-lobe suppression and improved phase sensitivity.
Clayton B WalkerAnna WisniowieckiJack C TangPatricia M QuiñonesWihan KimJohn S OghalaiBrian E ApplegatePublished in: Biomedical optics express (2023)
A common processing approach for optical coherence tomography (OCT) uses a window function (e.g., Hann or rectangular window) for spectral shaping prior to calculating the Fourier transform. Here we build on a multi-window approach [Opt. Express8, 5267 (2017)10.1364/BOE.8.005267] that enables improved resolution while still suppressing side-lobe intensity. The shape of the window function defines the trade-off between main-lobe width (resolution) and side-lobe intensity. We have extended the approach to include the interferometric phase for phase-sensitive applications like vibrometry and Doppler OCT. Using the Hann window as a reference, we show that 11 Taylor windows are sufficient to achieve 50% improvement in axial resolution, -31 dB side-lobe intensity, and 20% improvement in phase sensitivity with low computational cost.