Login / Signup

Self-Templating Copolymerization to Produce Robust Conductive Nanocoatings Based on Conjugated Polymer Brushes with Implementable Memristive Characteristics.

Karol WolskiJoanna SmendaWojciech ŚwierzPaweł Da BczyńskiMateusz M MarzecSzczepan Zapotoczny
Published in: Small (Weinheim an der Bergstrasse, Germany) (2024)
An effective synthesis of conductive polymer brushes, i.e., self-templating surface-initiated copolymerization (ST-SICP), is developed. It proceeds through copolymerization of pendant thiophene groups in the precursor multimonomer poly(3-methylthienyl methacrylate) (PMTM) brushes with free 3-methylthiophene (3MT) monomers leading to PMTM-co-P3MT brushes. This approach leads to improved conformational freedom of generated conjugated poly(thiophene)-based chains and their higher share in the brushes with respect to conjugation of pendant thiophene groups only. As a result, best performing conjugated PMTM-co-P3MT brushes demonstrate high ohmic conductivity in both out-of-plane and in-plane direction. Furthermore, thanks to the covalent anchoring as well as intra- and intermolecular connections, highly stable and mechanically robust nanocoatings are produced which can survive mechanical cleaning and long-term storage under ambient conditions. Grafting of ionic poly(sodium 4-styrenesulfonate) (PSSNa) in between PMTM-co-P3MT chains brings new properties to such binary mixed brushes that can operate as thin-film memristive coating with switchable conductance. It is worth mentioning that the crucial synthetic steps, i.e., grafting of precursor PMTM brushes by surface-initiated organocatalyzed atom transfer radical polymerization (SI-O-ATRP) and PSSNa chains by surface-initiated photoiniferter-mediated polymerization (SI-PIMP) are conducted under ambient conditions using only microliter volumes of reagents providing methodology that can be considered for use beyond the laboratory scale.
Keyphrases
  • air pollution
  • photodynamic therapy
  • particulate matter
  • molecular dynamics
  • ionic liquid
  • room temperature
  • energy transfer