Login / Signup

A Compact Fiber-Coupled NIR/MIR Laser Absorption Instrument for the Simultaneous Measurement of Gas-Phase Temperature and CO, CO 2 , and H 2 O Concentration.

Lin ShiTorsten EndresJay B JeffriesThomas DreierChristof Schulz
Published in: Sensors (Basel, Switzerland) (2022)
A fiber-coupled, compact, remotely operated laser absorption instrument is developed for CO, CO 2 , and H 2 O measurements in reactive flows at the elevated temperatures and pressures expected in gas turbine combustor test rigs with target pressures from 1-25 bar and temperatures of up to 2000 K. The optical engineering for solutions of the significant challenges from the ambient acoustic noise (~120 dB) and ambient test rig temperatures (60 °C) are discussed in detail. The sensor delivers wavelength-multiplexed light in a single optical fiber from a set of solid-state lasers ranging from diodes in the near-infrared (~1300 nm) to quantum cascade lasers in the mid-infrared (~4900 nm). Wavelength-multiplexing systems using a single optical fiber have not previously spanned such a wide range of laser wavelengths. Gas temperature is inferred from the ratio of two water vapor transitions. Here, the design of the sensor, the optical engineering required for simultaneous fiber delivery of a wide range of laser wavelengths on a single optical line-of-sight, the engineering required for sensor survival in the harsh ambient environment, and laboratory testing of sensor performance in the exhaust gas of a flat flame burner are presented.
Keyphrases
  • high speed
  • air pollution
  • high resolution
  • particulate matter
  • solid state
  • photodynamic therapy
  • long non coding rna
  • room temperature
  • mass spectrometry
  • carbon dioxide
  • drug delivery
  • quantum dots
  • gas chromatography