Login / Signup

Effects of Temperature and Pressure on Corrosion Behavior of HVOF-Sprayed Fe-Based Amorphous Coating on the Mg-RE Alloy for Dissolvable Plugging Tools.

Yijiao SunHongxiang LiJun YangJishan Zhang
Published in: Materials (Basel, Switzerland) (2023)
To retard the degradation of the magnesium alloys for dissolvable ball seats, Fe-based amorphous coatings were deposited on dissolvable Mg-RE alloy substrates using high velocity oxygen-fuel spraying technology. The results show that the Fe-based amorphous coatings possess low porosity (0.82%) and high amorphous contents (91.4%) and their corrosion resistance decreases with the increase of temperature or pressure. However, with the help of Fe-based amorphous coatings, the degradation time of dissolvable Mg-RE alloy has been significantly prolonged. In particular, the service life of coated Mg-RE alloy exceeds 360 h at temperatures below 50 °C and reaches 87 h at 120 °C and 80 atm. Under high temperature and high pressure, the compactness of passive films decreases and the chemical activities of ions and metal elements increase, leading to the degradation of corrosion resistance of Fe-based amorphous coatings. In long-term corrosion, the crystallized splats are prone to corrosion because of the multiphase structures. The corroded crystallized splats are connected to the inevitable pores by the corroded intersplat regions, resulting in the formation of corrosion channels and the corrosion failure of coatings. This study provides a useful guidance for the corrosion protection of dissolvable plugging tools made of magnesium alloys.
Keyphrases
  • room temperature
  • aqueous solution
  • solid state
  • mental health
  • metal organic framework
  • high resolution
  • ionic liquid
  • blood flow