Login / Signup

Switchable Oligo(glycidyl ether) Acrylate Bottlebrushes "Grafted-from" Polystyrene Surfaces: A Versatile Strategy toward Functional Cell Culture Substrates.

Daniel David StöbenerJohanna ScholzUwe SchedlerMarie Weinhart
Published in: Biomacromolecules (2018)
Thermoresponsive brushes based on linear poly(glycidyl ether)s (PGEs) have already shown to be functional coatings for cell sheet fabrication. In here, we introduce a method to functionalize polystyrene (PS) tissue culture substrates with thermoresponsive coatings comprising glycidyl ether-based bottlebrush architectures. Utilizing the UV-induced "grafting-from" approach, thermoresponsive oligo(glycidyl ether) acrylate (OGEA) macromonomers were polymerized from PS substrates under bulk conditions. Applying ellipsometry, water contact angle (CA), and atomic force microscopy (AFM) measurements, we found that OGEA coatings exhibit a complex, gel-like structure comprising nanosized roughness and exhibit a temperature-dependent phase transition in water through the reversible hydration of OGEA bottlebrush side chains. To assess the utility of the coatings as functional substrates for cell sheet fabrication, human dermal fibroblast (HDF) adhesion and detachment were investigated. By adjusting the bottlebrush properties via the grafting procedure and coating structure, we were able to harvest confluent HDF sheets from functionalized PS substrates in a temperature-triggered, controlled manner. As the first report on surface-grafted bottlebrushes comprising thermoresponsive side chains with molecular weight of up to 1 kDa, this study demonstrates the potential of OGEA-based coatings for cell sheet fabrication.
Keyphrases