Login / Signup

Synthesis of Zn2NbN3ternary nitride semiconductor with wurtzite-derived crystal structure.

Andriy Zakutayev
Published in: Journal of physics. Condensed matter : an Institute of Physics journal (2021)
Binary III-N nitride semiconductors with wurtzite crystal structure such as GaN and AlN have been long used in many practical applications ranging from optoelectronics to telecommunication. The structurally related ZnGeN2or ZnSnN2derived from the parent binary compounds by cation mutation (elemental substitution) have recently attracted attention, but such ternary nitride materials are mostly limited to II-IV-N2compositions. This paper demonstrates synthesis and characterization of zinc niobium nitride (Zn2NbN3)-a previously unreported II2-V-N3ternary nitride semiconductor. The Zn2NbN3thin films are synthesized using a one-step adsorption-controlled growth that locks in the targeted stoichiometry, and a two-step deposition/annealing method that suppresses the loss of Zn and N. Measurements indicate that this sputtered Zn2NbN3crystalizes in cation-disordered wurtzite-derived structure, in contrast to chemically related rocksalt-derived Mg2NbN3compound, also synthesized here for comparison using the two-step method. The estimated wurtzite lattice parameter ratio of Zn2NbN3is 1.55, and the optical absorption onset is at 2.1 eV. Both of these values are lower compared to published Zn2NbN3computational values ofc/a= 1.62 andEg= 3.5-3.6 eV. Additional theoretical calculations indicate that this difference is due to cation disorder in experimental samples, suggesting a way to tune the structural parameters and the resulting properties of heterovalent ternary nitride materials. Overall, this work expands the wurtzite family of nitride semiconductors to include Zn2NbN3, and suggests that related II2-V-N3and other ternary nitrides should be possible to synthesize.
Keyphrases
  • reduced graphene oxide
  • visible light
  • crystal structure
  • heavy metals
  • quantum dots
  • ionic liquid
  • gold nanoparticles
  • working memory
  • systematic review
  • mass spectrometry
  • drug induced