AGEs induce MMP-9 promoter demethylation through the GADD45α-mediated BER pathway to promote breast cancer metastasis in patients with diabetes.
Liyan ZhouGuiying BaiYue SongXiaohui LiuXiaoqing LiYilin DengYiran SiYehui ShiHongli LiPublished in: Endocrine-related cancer (2024)
Scientific evidence has linked diabetes to a higher incidence and increased aggressiveness of breast cancer; however, mechanistic studies of the numerous regulators involved in this process are insufficiently thorough. Advanced glycation end products (AGEs) play an important role in the chronic complications of diabetes, but the mechanisms of AGEs in breast cancer are largely unexplored. In this study, we first demonstrate that high AGE levels in breast cancer tissues are associated with the diabetic state and poor patient outcomes. Furthermore, AGEs interact with the receptor for AGEs (RAGE) to promote breast cancer cell migration and invasion. Mechanistically, based on RNA sequencing (RNA-seq) analysis, we reveal that growth arrest and DNA damage gene 45α (GADD45α) is a vital protein upregulated by AGEs through a P53-dependent pathway. Next, GADD45α recruits thymine DNA glycosylase for base excision repair to form the demethylation complex at the promoter region of MMP-9 and enhance MMP-9 transactivation through DNA demethylation. Overall, our results indicate a critical regulatory role of AGEs in patients with breast cancer and diabetes and reveal a novel mechanism of epigenetic modification in promoting breast cancer metastasis.