Login / Signup

Effect of substituting donors on the hole mobility of hole transporting materials in perovskite solar cells: a DFT study.

Md Al Mamunur RashidSein MinSung Keon NamgoongKeunhong Jeong
Published in: Physical chemistry chemical physics : PCCP (2023)
Several hole-transporting materials (HTMs) have been designed by incorporating different types of π-conjugation group such as long chain aliphatic alkenes and condensed aromatic rings of benzene and thiophene and their derivatives on both sides between the planar core and donor of a reference HTM. Various electronic, optical, and dynamic properties have been calculated by using DFT, TDDFT, and Marcus theory. In this study, all the designed HTMs show a lower HOMO energy level and match well with the perovskite absorbers. Inserting condensed rings results in better hole mobility compared to aliphatic double bonds. It is found that the charge transfer integral is the dominant factor which mainly influences the hole mobility in our studied HTMs. Other factors such as hole reorganization energy, hole hopping rate, and centroid distance have a minor effect on hole mobility. Thus, this study is expected to provide guidance for the design and synthesis of new HTMs with increased hole mobility.
Keyphrases
  • perovskite solar cells
  • solar cells
  • molecular docking
  • molecular dynamics
  • ionic liquid