Login / Signup

Biodegradable Dextrin-Based Microgels for Slow Release of Dual Fertilizers for Sustainable Agriculture.

Ankita DhimanPiyush ThaperDimpy BhardwajGarima Agrawal
Published in: ACS applied materials & interfaces (2024)
In this research, we report dextrin-based biodegradable microgels (PDXE MGs) having phosphate-based cross-linking units for slow release of urea and a potential P source to improve fertilization. PDXE MGs (∼200 nm) are synthesized by cross-linking the lauroyl-functionalized dextrin chains with sodium tripolyphosphate. The developed PDXE MGs exhibit high loading (∼10%) and encapsulation efficiency (∼88%) for urea. It is observed that functionalization of PDXE MGs with lauroyl chains slows down the release of urea (90% in ∼24 days) as compared to nonfunctionalized microgels (PDX MGs) (99% in ∼17 days) in water. Further studies of the developed formulation display that Urea@PDXE MGs significantly boost maize seed germination and overall plant growth as compared to pure urea fertilizer. Moreover, analysis of maize leaves obtained from plants treated with Urea@PDXE MGs reveals 3.5 ± 0.3% nitrogen content and 90 ± 0.7 mg/g chlorophyll content. These values are significantly higher than 1.4 ± 0.6% nitrogen content and 48 ± 0.05 mg/g chlorophyll content obtained by using bare urea. Further, acid phosphatase activity in roots is reduced upon treatment with PDXE MGs and Urea@PDXE MGs, suggesting the availability of P upon degradation of PDXE MGs by the amylase enzyme in soil. These experimental results present the developed microgel-based biodegradable formulation with a slow release feature as a potential candidate to move toward sustainable agriculture practices.
Keyphrases
  • drug delivery
  • plant growth
  • climate change
  • healthcare
  • primary care
  • machine learning
  • mass spectrometry
  • heavy metals
  • newly diagnosed
  • simultaneous determination
  • liquid chromatography
  • water soluble