Login / Signup

An energy-optimization method to study gel-swelling in confinement.

Chaitanya JoshiMathew Q GisoJean-François LoufSujit Sankar DattaTimothy J Atherton
Published in: Soft matter (2023)
We recast the problem of hydrogel swelling under physical constraints as an energy optimization problem. We apply this approach to compute equilibrium shapes of hydrogel spheres confined within a jammed matrix of rigid beads and interpret the results to determine how confinement modifies the mechanics of swollen hydrogels. In contrast to the unconfined case, we find a spatial separation of strains within the bulk of the hydrogel as the strain becomes localized to an outer region. We also explore the contact mechanics of the gel, finding a transition from Hertzian behavior to non-Hertzian behavior as a function of swelling. Our model, implemented in the Morpho shape optimization environment and validated against an experimentally demonstrated prototypical scenario, can be applied in any dimension, readily adapted to diverse swelling scenarios and extended to use other energies in conjunction.
Keyphrases
  • hyaluronic acid
  • wound healing
  • drug delivery
  • tissue engineering
  • escherichia coli
  • climate change
  • magnetic resonance
  • physical activity
  • molecular dynamics simulations
  • computed tomography
  • magnetic resonance imaging