Prediction of Myoelectric Biomarkers in Post-Stroke Gait.
Iqram HussainSe-Jin ParkPublished in: Sensors (Basel, Switzerland) (2021)
Electromyography (EMG) is sensitive to neuromuscular changes resulting from ischemic stroke and is considered a potential predictive tool of post-stroke gait and rehabilitation management. This study aimed to evaluate the potential myoelectric biomarkers for the classification of stroke-impaired muscular activity of the stroke patient group and the muscular activity of the control healthy adult group. We also proposed an EMG-based gait monitoring system consisting of a portable EMG device, cloud-based data processing, data analytics, and a health advisor service. This system was investigated with 48 stroke patients (mean age 70.6 years, 65% male) admitted into the emergency unit of a hospital and 75 healthy elderly volunteers (mean age 76.3 years, 32% male). EMG was recorded during walking using the portable device at two muscle positions: the bicep femoris muscle and the lateral gastrocnemius muscle of both lower limbs. The statistical result showed that the mean power frequency (MNF), median power frequency (MDF), peak power frequency (PKF), and mean power (MNP) of the stroke group differed significantly from those of the healthy control group. In the machine learning analysis, the neural network model showed the highest classification performance (precision: 88%, specificity: 89%, accuracy: 80%) using the training dataset and highest classification performance (precision: 72%, specificity: 74%, accuracy: 65%) using the testing dataset. This study will be helpful to understand stroke-impaired gait changes and decide post-stroke rehabilitation.
Keyphrases
- machine learning
- atrial fibrillation
- big data
- healthcare
- deep learning
- skeletal muscle
- public health
- neural network
- high density
- mental health
- cerebral palsy
- emergency department
- electronic health record
- resistance training
- upper limb
- mass spectrometry
- risk assessment
- climate change
- minimally invasive
- young adults
- health information
- atomic force microscopy
- blood brain barrier
- brain injury
- social media
- body composition