Login / Signup

Surface Oxidation and Wetting Synergistic Effect of Liquid Metals.

Yushu WangHao ChangWei Rao
Published in: ACS applied materials & interfaces (2023)
Various functions of liquid metals are closely related to their surface performances, among which oxidation and wetting are the two most important surface processes. The two processes of liquid metals are inseparable in most practical applications; however, the coupling of oxidation and wetting of liquid metals has received little attention. Here, we demonstrate the synergistic effect of oxidation and wetting of liquid metals through establishing a liquid system containing the copper ion acid solution. By modulating the concentrations of copper ions and hydrogen ions, three different modes of the liquid metal surface are presented, where the oxidation process and the wetting process are in a competitive relationship. Whichever of the two processes is dominant can determine the stability of copper particles produced on the surface of liquid metals, that is, affect whether the "phagocytosis" process can occur. It is revealed that the magnitude of current density on the surface of liquid metals, caused by galvanic corrosion behavior between liquid metals and copper particles, is the key factor influencing the dominance of different surface processes of liquid metals. Utilizing the synergistic effect, we prepare a liquid metal film with adjustable reflectivity, in which surface states can be changed repeatedly between the bright state and the darken state by simple solution immersion. The liquid metal film with different surface states can show obvious difference in optical performance, which has application potential in color camouflage. Understanding the surface synergistic effect will facilitate further exploration of the abundant exotic liquid metal interface phenomena.
Keyphrases
  • ionic liquid
  • human health
  • health risk
  • health risk assessment
  • signaling pathway
  • risk assessment
  • mass spectrometry
  • nitric oxide
  • room temperature
  • cancer therapy
  • reduced graphene oxide