Polyacrylonitrile Porous Membrane-Based Gel Polymer Electrolyte by In Situ Free-Radical Polymerization for Stable Li Metal Batteries.
Zhichuan ShenJiawei ZhongShiyong JiangWenhao XieShiying ZhanKaiji LinLinyong ZengHailing HuGuide LinYuhan LinShu-Hui SunZhicong ShiPublished in: ACS applied materials & interfaces (2022)
Because of their high ionic conductivity, utilizing gel polymer electrolytes (GPEs) is thought to be an effective way to accomplish high-energy-density batteries. Nevertheless, most GPEs have poor adaptability to Ni-rich cathodes to alleviate the problem of inevitable rapid capacity decay during cycling. Therefore, to match LiNi 0.8 Co 0.1 Mn 0.1 O 2 (NCM811), we applied pentaerythritol tetraacrylate (PETEA) monomers to polymerize in situ in a polyacrylonitrile (PAN) membrane to obtain GPEs (PETEA-TCGG-PAN). The impedance variations and key groups during the in situ polymerization of PETEA-TCGG-PAN are investigated in detail. PETEA-TCGG-PAN with a high lithium-ion transference number (0.77) exhibits an electrochemical decomposition voltage of 5.15 V. Noticeably, the NCM811|PETEA-TCGG-PAN|Li battery can cycle at 2 C for 120 cycles with a capacity retention rate of 89%. Even at 6 C , the discharge specific capacity is able to reach 101.47 mAh g -1 . The combination of LiF and Li 2 CO 3 at the CEI interface is the reason for the improved rate performance. Moreover, when commercialized LFP is used as the cathode, the battery can also cycle stably for 150 cycles at 0.5 C . PETEA and PAN can together foster the transportation of Li + with the construction of a fast ion transport channel, making a contribution to stable charge-discharge of the above batteries. This study provides an innovative design philosophy for designing in situ GPEs in high-energy-density lithium metal batteries.