Fiber-based SORS-SERDS system and chemometrics for the diagnostics and therapy monitoring of psoriasis inflammatory disease in vivo.
Johannes SchleusenerShuxia GuoMaxim E DarvinGisela ThiedeOlga ChernavskaiaFlorian KnorrJürgen LademannJürgen PoppThomas Wilhelm BocklitzPublished in: Biomedical optics express (2021)
Psoriasis is considered a widespread dermatological disease that can strongly affect the quality of life. Currently, the treatment is continued until the skin surface appears clinically healed. However, lesions appearing normal may contain modifications in deeper layers. To terminate the treatment too early can highly increase the risk of relapses. Therefore, techniques are needed for a better knowledge of the treatment process, especially to detect the lesion modifications in deeper layers. In this study, we developed a fiber-based SORS-SERDS system in combination with machine learning algorithms to non-invasively determine the treatment efficiency of psoriasis. The system was designed to acquire Raman spectra from three different depths into the skin, which provide rich information about the skin modifications in deeper layers. This way, it is expected to prevent the occurrence of relapses in case of a too short treatment. The method was verified with a study of 24 patients upon their two visits: the data is acquired at the beginning of a standard treatment (visit 1) and four months afterwards (visit 2). A mean sensitivity of ≥85% was achieved to distinguish psoriasis from normal skin at visit 1. At visit 2, where the patients were healed according to the clinical appearance, the mean sensitivity was ≈65%.