Applications of Genomics, Metabolomics, Fourier Transform Infrared in the Evaluation of Spoilage Targets of Shewanella putrefaciens from Spoiled Bigeye Tuna.
Xin-Yun WangJun YanJing XiePublished in: Journal of agricultural and food chemistry (2023)
Shewanella putrefaciens is a typical spoiler that is commonly found in seafood and has high spoilage potential. However, the spoilage mechanism against Shewanella putrefaciens at the gene and metabolism levels has not been well elucidated. This work determined the spoilage targets on Shewanella putrefaciens XY07 from spoiled bigeye tuna by genome sequencing, metabolomics, and Fourier transform infrared (FTIR) analysis. Shewanella putrefaciens XY07 contained some genes on spoilage regulating of cys genes, his genes, spe genes and rpoS gene involved in sulfur metabolism, histidine metabolism, arginine and proline degradation, and biofilm formation at the genome level, respectively. Some spoilage genes like speC, cysM, trxB genes were identified. In addition, ABC transporters, arginine and proline metabolism; beta-alanine metabolism; glycine, serine, and threonine metabolism; histidine metabolism; sulfur metabolism; and lipid metabolism were identified as important pathways related to aquatic food during spoilage, which indicated the functions of amino acid degradation in S. putrefaciens XY 07 by metabolomics analysis. The metabolites of l-ornithine, 5-aminopentanoate, and 4-aminobutyraldehyde could be further metabolized to spermidine and spermine, producing a spoilage odor, and were involved in arginine and proline metabolism serving as key spoilage regulating metabolisms. Therefore, Shewanella putrefaciens XY07 was applied to genomics, metabolomics analysis, and FTIR to provide comprehensive insight into the investigation of spoilage targets.