Login / Signup

Differential reliance on aquatic prey subsidies influences mercury exposure in riparian arachnids and songbirds.

Allyson K JacksonCollin A Eagles-SmithW Douglas Robinson
Published in: Ecology and evolution (2021)
Cross-ecosystem subsidies move substantial amounts of nutrients between ecosystems. Emergent aquatic insects are a particularly important prey source for riparian songbirds but may also move aquatic contaminants, such as mercury (Hg), to riparian food webs. While many studies focus on species that eat primarily emergent aquatic insects, we instead study riparian songbirds with flexible foraging strategies, exploiting both aquatic and terrestrial prey sources. The goal in this study is to trace reliance on aquatic prey sources and correlate it to Hg concentrations in common riparian arachnids (Families Tetragnathidae, Opiliones, and Salticidae) and songbirds (Common Yellowthroat Geothlypis trichas, Spotted Towhee Pipilo maculatus, Swainson's Thrush Catharus ustulatus, Song Sparrow Melospiza melodia, and Yellow Warbler Setophaga petechia). We used stable isotopes of δ13C and δ15N and Bayesian mixing models in MixSIAR to determine the reliance of riparian predators on aquatic prey sources. Using mixed effects models, we found that arachnid families varied in their reliance on aquatic prey sources. While songbird species varied in their reliance on aquatic prey sources, songbirds sampled earlier in the season consistently relied more on aquatic prey sources than those sampled later in the season. For both arachnids and songbirds, we found a positive correlation between the amount of the aquatic prey source in their diet and their Hg concentrations. While the seasonal pulse of aquatic prey to terrestrial ecosystems is an important source of nutrients to riparian species, our results show that aquatic prey sources are linked with higher Hg exposure. For songbirds, reliance on aquatic prey sources early in the breeding season (and subsequent higher Hg exposure) coincides with timing of egg laying and development, both of which may be impacted by Hg exposure.
Keyphrases
  • risk assessment
  • drinking water
  • human health
  • heavy metals
  • climate change
  • physical activity
  • blood pressure
  • heat stress