Separation of Xe from Kr with Record Selectivity and Productivity in Anion-Pillared Ultramicroporous Materials by Inverse Size-Sieving.
Qingju WangTian KeLifeng YangZhaoqiang ZhangXili CuiZongbi BaoQilong RenQiwei YangHuabin XingPublished in: Angewandte Chemie (International ed. in English) (2020)
The separation of xenon/krypton (Xe/Kr) mixture is of great importance to industry, but the available porous materials allow the adsorption of both, Xe and Kr only with limited selectivity. Herein we report an anion-pillared ultramicroporous material NbOFFIVE-2-Cu-i (ZU-62) with finely tuned pore aperture size and structure flexibility, which for the first time enables an inverse size-sieving effect in separation along with record Xe/Kr selectivity and ultrahigh Xe capacity. Evidenced by single-crystal X-ray diffraction, the rotation of anions and pyridine rings upon contact of larger-size Xe atoms adapts cavities to the shape/size of Xe and allows strong host-Xe interaction, while the smaller-size Kr is excluded. Breakthrough experiments confirmed that ZU-62 has a real practical potential for producing high-purity Kr and Xe from air-separation byproducts, showing record Kr productivity (206 mL g-1 ) and Xe productivity (42 mL g-1 , in desorption) as well as good recyclability.