3D printed patient-specific aortic root models with internal sensors for minimally invasive applications.
Ghazaleh HaghiashtianiKaiyan QiuJorge D Zhingre SanchezZachary J FuenningPriya NairSarah E AhlbergPaul A IaizzoMichael C McAlpinePublished in: Science advances (2020)
Minimally invasive surgeries have numerous advantages, yet complications may arise from limited knowledge about the anatomical site targeted for the delivery of therapy. Transcatheter aortic valve replacement (TAVR) is a minimally invasive procedure for treating aortic stenosis. Here, we demonstrate multimaterial three-dimensional printing of patient-specific soft aortic root models with internally integrated electronic sensor arrays that can augment testing for TAVR preprocedural planning. We evaluated the efficacies of the models by comparing their geometric fidelities with postoperative data from patients, as well as their in vitro hemodynamic performances in cases with and without leaflet calcifications. Furthermore, we demonstrated that internal sensor arrays can facilitate the optimization of bioprosthetic valve selections and in vitro placements via mapping of the pressures applied on the critical regions of the aortic anatomies. These models may pave exciting avenues for mitigating the risks of postoperative complications and facilitating the development of next-generation medical devices.
Keyphrases
- aortic valve
- transcatheter aortic valve replacement
- aortic stenosis
- minimally invasive
- aortic valve replacement
- transcatheter aortic valve implantation
- ejection fraction
- end stage renal disease
- healthcare
- robot assisted
- left ventricular
- chronic kidney disease
- peritoneal dialysis
- stem cells
- heart failure
- newly diagnosed
- big data
- patient reported outcomes
- mass spectrometry
- low cost
- risk assessment
- tissue engineering
- coronary artery
- mesenchymal stem cells