Login / Signup

Brain tissue-resident immune memory cells are required for long-term protection against CNS infection with rabies virus.

Aurore LebrunRhonda B KeanD Craig Hooper
Published in: Future virology (2020)
Immune memory cells residing in previously infected, nonlymphoid tissues play a role in immune surveillance. In the event that circulating antibodies fail to prevent virus spread to the tissues in a secondary infection, these memory cells provide an essential defense against tissue reinfection. CNS tissues are isolated from circulating immune cells and antibodies by the blood-brain barrier, making the presence of tissue-resident immune memory cells particularly needed to combat recurrent infection by neurotropic viruses. Wild-type and laboratory-engineered rabies viruses are neurotropic, differ in pathogenicity, and have varying effects on BBB functions. These viruses have proven invaluable tools in demonstrating the importance of tissue-resident immune memory cells in the reinfection of CNS tissues. Only Type 1 immune memory is effective at therapeutically clearing a secondary infection with wild-type rabies viruses from the CNS and does so despite the maintenance of blood-brain barrier integrity.
Keyphrases