Login / Signup

The Comparative Analysis of Carboxylic Acid Composition of Four Iris Species from Ukraine.

Olha МykhailenkoZigmantas GudžinskasSvitlana RomanovaTetyana OrlovaSofiia KozyraSvitlana HarnaVictoriia Volochai
Published in: Chemistry & biodiversity (2021)
The present article reports results of analysis of carboxylic acids in leaves of Iris species from Ukraine using a gas chromatography (GC) method with mass spectrometric (MS) detection (GC/MS). Carboxylic acids play significant roles in contemporary society as evidenced by multiple applications in fields of medicine, agriculture, pharmacy, food, and other industries. Study of natural plant products as a source of organic acids is of particular interest. Carboxylic acid composition of leaves of Iris hungarica Waldst. & Kit., Iris germanica L., Iris pallida Lam., and Iris variegate L. was studied for the first time applying GC/MS method. The mass spectrums of compounds were matched with NIST and WILEY Libraries. The GC/MS analysis revealed the presence of 26 common acids in the plant raw materials studied. The short-chain carboxylic acids, such as citric (1337.5-12364.4 mg/kg), malic (50.8-4558.0 mg/kg) and oxalic (1199.0-3435.2 mg/kg) acids were contained in significantly high quantity in all samples. Ferulic, p-coumaric and vanillic acids were the most abundant among phenolic acids. α-Linolenic acid was dominant in the leaves of I. germanica (869.5 mg/kg), I. pallida (753.3 mg/kg), and I. variegate (250.3 mg/kg) among polyunsaturated fatty acids, however, linoleic acid prevailed in the plant raw material of I. hungarica (1150.7 mg/kg). Since the leaves of Iris species studied contain carboxylic acids with diverse pharmacological activity, extracts of these raw materials are perspective for development food supplements and medicines.
Keyphrases
  • mass spectrometry
  • gas chromatography
  • climate change
  • emergency department
  • multiple sclerosis
  • high resolution
  • single cell
  • tandem mass spectrometry
  • gas chromatography mass spectrometry
  • solid phase extraction