Login / Signup

Virtual daily living test to screen for mild cognitive impairment using kinematic movement analysis.

Kyoungwon SeoJae-Kwan KimDong Hoon OhHokyoung RyuHojin Choi
Published in: PloS one (2017)
Questionnaires or computer-based tests for assessing activities of daily living are well-known approaches to screen for mild cognitive impairment (MCI). However, questionnaires are subjective and computerized tests only collect simple performance data with conventional input devices such as a mouse and keyboard. This study explored the validity and discriminative power of a virtual daily living test as a new diagnostic approach to assess MCI. Twenty-two healthy controls and 20 patients with MCI were recruited. The virtual daily living test presents two complex daily living tasks in an immersive virtual reality environment. The tasks were conducted based on subject body movements and detailed behavioral data (i.e., kinematic measures) were collected. Performance in both the proposed virtual daily living test and conventional neuropsychological tests for patients with MCI was compared to healthy controls. Kinematic measures considered in this study, such as body movement trajectory, time to completion, and speed, classified patients with MCI from healthy controls, F(8, 33) = 5.648, p < 0.001, η2 = 0.578. When both hand and head speed were employed in conjunction with the immediate free-recall test, a conventional neuropsychological test, the discrimination power for screening MCI was significantly improved to 90% sensitivity and 95.5% specificity (cf. the immediate free-recall test alone has 80% sensitivity and 77.3% specificity). Inclusion of the kinematic measures in screening for MCI significantly improved the classification of patients with MCI compared to the healthy control group, Wilks' Lambda = 0.451, p < 0.001.
Keyphrases
  • mild cognitive impairment
  • cognitive decline
  • physical activity
  • deep learning
  • machine learning
  • electronic health record
  • high throughput
  • optical coherence tomography