Improved long-term prognostic value of coronary CT angiography-derived plaque measures and clinical parameters on adverse cardiac outcome using machine learning.
Christian TescheMaximilian J BauerMoritz BaquetBenedikt HedelsFlorian StraubeStefan HartlHunter N GrayDavid JochheimTheresia AschauerSebastian RogowskiU Joseph SchoepfSteffen MassbergEllen HoffmannUllrich EbersbergerPublished in: European radiology (2020)
• A machine learning (ML) model portends high discriminatory power to predict major adverse cardiac events (MACE). • ML-based risk stratification shows superior diagnostic performance for MACE prediction over coronary CT angiography (cCTA)-derived risk scores or clinical parameters alone. • A ML model outperforms conventional logistic regression analysis for the prediction of MACE.