Cell Adhesion Induced Using Surface Modification with Cell-Penetrating Peptide-Conjugated Poly(ethylene glycol)-Lipid: A New Cell Glue for 3D Cell-Based Structures.
Yuji TeramuraSana AsifKristina N EkdahlElisabet GustafsonBo NilssonPublished in: ACS applied materials & interfaces (2016)
We synthesized a novel material, cell-penetrating peptide-conjugated poly(ethylene glycol)-lipid (CPP-PEG-lipid), that can induce the adhesion of floating cells. Firm cell adhesion with spreading could be induced by cell surface modification with the CPP-PEG-lipids. Cell adhesion was induced by CPPs but not by any other cationic short peptides we tested. Here, we demonstrated adherence using the floating cell line CCRF-CEM as well as primary human T cells, B cells, erythrocytes, and hepatocytes. As compared to cells grown in suspension, adherent cells were more rapidly induced to attach to substrates with the cell-surface modification. The critical factor for attachment was localization of CPPs at the cell membrane by PEG-lipids with PEG > 20 kDa. These cationic CPPs on PEG chains were able to interact with substrate surfaces such as polystyrene (PS) surfaces, glass surfaces, and PS microfibers that are negatively charged, inducing firm cell adhesion and cell spreading. Also, as opposed to normal cationic peptides that interact strongly with cell membranes, CPPs were less interactive with the cell surfaces because of their cell-penetrating property, making them more available for adhering cells to the substrate surface. No effects on cell viability or cell proliferation were observed after the induction of cell adhesion. With this technique, cells could be easily immobilized onto PS microfibers, an important step in fabricating 3D cell-based structures. Cells immobilized onto 3D PS microfibers were alive, and human hepatocytes showed normal production of urea and albumin on the microfibers. This method is novel in inducing firm cell adhesion via a one-step treatment.
Keyphrases
- cell adhesion
- single cell
- induced apoptosis
- cell therapy
- cell cycle arrest
- cell proliferation
- drug delivery
- type diabetes
- endothelial cells
- oxidative stress
- escherichia coli
- photodynamic therapy
- adipose tissue
- mesenchymal stem cells
- endoplasmic reticulum stress
- skeletal muscle
- staphylococcus aureus
- cell cycle
- weight loss
- drug induced
- pi k akt
- cell migration
- liver injury