Digital Light Processing 4D Printing of Transparent, Strong, Highly Conductive Hydrogels.
Yangyang HeRan YuXinpan LiManwen ZhangYing ZhangXin YangXiaojuan ZhaoWei HuangPublished in: ACS applied materials & interfaces (2021)
Hydrogels have excellent biocompatibility, transparency, stretchability, and ionic conductivity, but their fabrication through photopolymerization-based 3D printing is limited due to the low solubility of hydrophobic photoinitiators and lack of efficient hydrophilic photoinitiators. Herein, a type of microemulsion is synthesized and the common hydrophobic photoinitiator can be adopted and finally, a series of transparent hydrogels with high strength (up to 22.9 MPa), elasticity (up to 583%), and ionic conductivity (up to 9.64 S m-1) are fabricated through digital light processing 3D printing technology. Objects with complex structures and a high printing resolution are printed. Hydrogels with both high strength and high ionic conductivity are obtained through chemical crosslinking and ion coordination effect. Dual-material 3D printing is applied to package the hydrogel with elastomers. Due to the high sensitivity and reliability under both stretching and compressive deformation, the hydrogel sensors are applied to monitor various human motions. In addition, the hydrogel exhibits solvent-induced dehydration and excellent water-activated shape memory properties, which are greatly beneficial for its storage and applications in the biomedical field.